Motor-CAD: Eddy Current Modeling in Conductive Components

Motor-CAD calculates eddy currents in conductive components such as permanent magnets, rotor sleeves, banding, and shafts using the magnetic diffusion equation within its 2D electromagnetic transient solver.

A. Magnetic Diffusion Equation

In Motor-CAD’s electromagnetic field formulation, eddy-current-carrying regions are governed by the magnetic diffusion equation

where: 

Symbol 

Description 

𝐀

Magnetic vector potential (B=∇×A𝐁=∇×𝐀

𝜇

Magnetic permeability 

𝜎

Electrical conductivity 

𝐯

Local linear velocity (v=ω×r𝐯=𝝎×𝐫

𝐁𝐫

Remanent flux density (non-zero for PMs, zero for unmagnetized metals) 

    • The motion-induced term  σ(v×∇×A)𝜎(𝐯×∇×𝐀) applies only to rotating components (e.g., the rotor). 
    • For stationary conductive parts (e.g., the stator), this term is omitted.

      B. Induced Current Density and Eddy-Current Losses

From the time-varying magnetic vector potential, the induced current density is given by: 

J=σ(−∂A∂t)𝐉=𝜎(−∂𝐀∂t)

The corresponding eddy-current power loss density (power dissipated per unit volume) is: 

Motor-CAD’s transient electromagnetic solver enforces the zero-net-current condition for each conductive region: 

This ensures physical current continuity—particularly important for circumferentially segmented magnets, where localized eddy loops must sum to zero across the entire segment. 

 

C. 2D-to-3D Correction Factors 

Because Motor-CAD’s electromagnetic model is two-dimensional, axial effects are incorporated through an empirical 2D–3D correction factor, k2D3Dk2D3D. Three methods are available depending on the operating frequency and magnet dimensions: 

1. Ruoho Method — Low-Frequency Validity 

Used when the magnet width w is smaller than the skin depth  δ. 
Applicable for low-frequency operation. 

 

2. Wakao–Fujiwara Method — High-Frequency Validity 

Used when  w>δ, i.e., high-frequency conditions. 

Here, the skin depth is calculated as: 

3. Hybrid Method —Full-Frequency Range

Motor-CAD automatically transitions between Ruoho and Wakao–Fujiwara methods based on the ratio w/δ, ensuring accuracy across both low and high frequency regimes. 

Notes: 

  • For V-shaped magnets, use the width of the magnet layer closest to the rotor surface (highest eddy-current loss region). 
  • For U-shaped magnets, use the average magnet width
D. Sleeve and Banding Losses

Motor-CAD applies the same Ruoho-based correction to compute losses in rotor banding and stator sleeves

Component 

Width (w) 

Axial Length (L) 

Rotor banding 

Pole width 

Magnet axial segment length 

Stator sleeve 

Pole width 

k×Lstator+Lend overhang

where k is the sleeve axial length multiplier

References 

  1. Ruoho et al., “Modeling Magnet Length in 2-D Finite-Element Analysis of Electric Machines,” IEEE Transactions on Magnetics, 2009. 
  1. S. Wakao et al., “Useful Formulas of Analytical Investigation in Electromagnetic Field Computation (Part 6),” IEE Japan, 2005.